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The Differential Geometry of Two-Phase Interfaces 
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Coherent as well as incoherent interfaces associated with simple two-phase boundaries have been ana- 
lyzed in terms of the concepts of differential geometry. Such tensor quantities as distortion, torsion and 
curvature have been developed and are all shown to give significant insight in describing the Burgers 
circuits and dislocation content of such boundaries. 

Introduction 

In a recent study (Marcinkowski, Sadananda & Cullen, 
1975) it was shown how two-phase interfaces could 
be treated in terms of simple geometric arguments. 
Both fully coherent and incoherent interfaces were 
treated. It would now appear appropriate to apply the 
somewhat abstract but powerful techniques of dif- 
ferential geometry to the same problem. The goal was 
twofold. In the first place, it was desired to gain a 
stronger physical insight into the various tensor quan- 
tities provided by the differential geometric approach. 
Secondly, it was hoped that the techniques of dif- 
ferential geometry would add further to the under- 
standing of two-phase interfaces. 
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Fig. 1. Continuous two-phase interface. (a) Initial state. (b) Final 
state. 

Distortion and metric tensors associated 
with a two-phase interface 

Let us first consider the perfect crystal, shown in Fig. 
l(a), of lattice constant ao. This can also be thought 
of as the initial state and will be designated by upper- 
case Latin indices, i.e. K, L, etc. This state can now be 
deformed to produce the (~) state shown in Fig. l(b). 
This will be called the final state, designated by lower- 
case Greek letters, i.e.K., 2, etc. It is clear from inspec- 
tion of the figure that it represents a coherent boundary 
(shown dotted) separating two phases of lattice con- 
stant ao and bo. We can now associate a distortion 
tensor A~ with the deformation that produces the (•) 
state from the (K) state which is defined as follows: 

dx ~ = A~dx K (1 a) 

and 

dxK=AKdx " (lb) 

where dx ~ and dx K are differential elements of length 
in the deformed and undeformed states respectively. 
The distortions can also be expressed as 

K (2a) e~ = A~ eK 

and 

e K  = A~e~ (2b) 

where e~ and eK are local base vectors in the deformed 
and undeformed states respectively. For the specific 
case of Fig. 1 we may write for A K 

A~=[A21 aZ2 A 3 ] = ( A  1 1 0 )  (3) 

\A~ A3 2 A33/ \ 0  0 1 

where Az 1 is some suitable function which accounts 
for the horizontal displacement of the vertical planes 
in Fig. l(a) while 

A l = f 2 + V f l  (4) 
where f l  and f2 are defined as 

1 
f l  = exp "a2 '+  1 (5a) 
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and 

1 
f 2 =  exp ' - a - Z ' - k  - 1 " (5b) 

The function f~ is shown in Fig. 2 where the co- 
ordinate x 2 is measured with respect to the local CO- 

K 

ordinate system located at the position of the potential 
two-phase boundary in Fig. l(a). Thus, for x 2 ~ - 0% 

K 

f2 = 0 and A ] = V, while for x 2 ~ + 0% fl  = 0 and A ~ = 

f 2 =  1. Right at the potential boundary where x2= 
K 

0, A~ =(1 + V)/2. Fig. l(b) was drawn with V=4/5, i.e. 
bo=4/5 ao. Thus the function given by (4) seems 
to be an appropriate one where the parameter a can 
be chosen so as to adjust the width of the distorted 
zone across the potential boundary. For finite values 
of a > 0  the boundary is continuous except for a =  0% 
in which case it becomes discontinuous. The distor- 
tion given by (3) can be visualized as arising from a 
phase change which results in a decrease in volume. 
Thus, (4) can be written out in full as 

1 + V exp (--aXK2) 

A I =  l + e x p  ( - a x  2) (6) 

while the inverse quantity A~ can be simply found 
from the following relation: 

a portion of the elastic strain is relaxed. Full removal 
of the elastic strain is accomplished by the perfectly 
torn state (k 1) illustrated in Fig. 3(b). An equivalent 
perfect tearing similar to that of the (k 1) state is shown 
by the (k 2) state of Fig. 4(a). Note that in all of the 
torn states, new free surfaces are created, and may be 
considered as a fundamental feature of these particular 
states. 

The (k) state of Fig. 3(a) may be derived from the 
(K) state by means of the distortion tensor 

0 0) 
A~:= 1 0 , (10) 

0 1 

which, except for the vanishing of the A2 ~ term, is 
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Fig. 2. Distribution function associated with the distortion of a 
two-phase interface. 

A~:A~r=6~ (7) 

where 6~ is the Kronecker delta defined as 

{ l f o r x = 2  
6~ = 0 for x # 2 .  (8) 

For simplicity, we have chosen the volume change to 
occur along the x 1 direction only so that A~ and A ] 

K 
in (3) are set equal to 1. We can thus now use (7) to 
write for A~ 

/AI o o i 
A ~ = [ A ~  1 0 (9a) 

\0 0 1/  

where 

1 + exp ( -- ax z) 

A I= 1 + V exp (--ax 2) (9b) 

while A~ is some suitable function which again ac- 
counts for the displacement of the vertical planes in 
Fig. l(b). 

It is now possible to tear (Kondo, 1962) the elastic- 
ally strained (x) state of Fig. l(b) so as to obtain the 
(k) state configuration shown in Fig. 3(a). This may 
be referred to as an imperfectly torn crystal since only 
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Fig. 3. (a) Imperfectly torn state of Fig. l(b). (b) Perfectly torn state 
of Fig. l(b). 
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identical to that given by (3). The perfectly torn (k 1) 
state of Fig. 3(b) can also be represented by (10) where 
A I is again given by (4), but with a set equal to oo. 
However, under these conditions this function pos- 
sesses no limiting value for x 2-- 0, and can thus not be 

defined. In order to overcome this difficulty, it is better 
to write the component A I of the distortion tensor 
Ak K as 

AI={H(+x2)}2+{VH(-x2)}I (11) 

where H(--XK2 ) and H ( + x  2) are Heaviside functions 

defined by 

{~ if x 2 > 0  
r (12a) H( - XK2 ) = if X 2 < 0 
K 

and 

0 if x 2 < 0  H(+~2)= 
1 if x 2 > 0 .  

K 

(12b) 

The curly bracket notation is used in (11) to emphasize 
the fact that each phase may be treated separately. 
(11) is simply another way of writing (4) for a ~ ~ .  
The inverse/1~ of (11) is readily found from (11) and 
(7) to be 

3 2 
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(a) 
(k  £ ) STATE 

{1 
/tI = {H( + x2)}2 + H( . (13) 

K 1 

The distortions given by (11) and (13) can also be used 
to generate the perfectly torn (k 2) state of Fig. 4(a) 
and the dislocated (k 3) state of Fig. 4(b) from the 
initial (K) state. In particular 

Ak2 ----- A~ 3 - A ~  1 (14a) 
and 

K r _  r (14b) A k2 = A k 3 = A k 1. 

It is important to note that the dislocated state (k 3) 
can be generated from the torn (k 2) state by the in- 
troduction of extra matter. Nevertheless, the (k 2) and 
(k 3) states can be generated from the same distortion 
tensor as given by (14). This particular point has im- 
portant ramifications, as will be discussed later. 

A metric tensor g~z can also be associated with the 
0c) state of Fig. l(b) since 

g~.=e~,  e~ (15a) 

which with the aid of (2a) becomes 
= K L K L K K (15b) g~  A~A~eK. eL=A,cAa6KL=A,cAa 

where the Kronecker delta in the above equation 
arises because the initial-state coordinates are Carte- 
sian. From (15b) and (3), we can now write 

g22 • (16) 
0 

The metric tensor for the (K) state is obviously given by 

gKL = (~KL (17) 

since the coordinates are Cartesian, while for the gkt 
state, we can write from (10) and an expression of the 
form given by (15b): 

0 0) 
gu = 1 0 (18a) 

0 1 

I. I 
i 

I 
l 

I" T 1 

5 5"; 6' 6 

where 

• f l  + V exp ( - a x 2 ) q  2 
~ J  (lSb) 

gl l  -- 1 +exp  ( 

In the case of the (kl), (k 2) and (k 3) states, the metric 
tensor is again of the same form as that given by (18a) 
but with 

g l l = { H 2 ( +  2 { V 2 H 2 ( _  2 X K ) } 2 +  X K ) } 1 "  (19) 

(b) 

( k 3 ) STATE 
Fig. 4. (a) Alternative perfectly torn state to that shown in Fig. 3(b). 

(b) Dislocated (discontinuous) two-phase interface of Fig. l(b). 

Burgers circuit associated with a two-phase interface 

It is now possible to define Burgers circuits with re- 
spect to each of the states shown in Figs. 1, 3 and 4. 
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In particular, the equivalent paths 1-2-3--4-5-6-1 are 
shown for each of these states. The closure failure or 
Burgers vector b K associated with a given path may 
be written in terms of the following line integral 
(Kr/Sner, 1959) 

b~= - (~A~:dx K . (20a) 

It is important to note that the above integration path 
must be taken with respect to the initial (K) state of 
the crystal. (20a) can be expanded with the aid of (9) 
to give 

= - l d x  - r 

- f l A l d x l - f l A 2 1 d x 2 = 0 "  (20b) 

The same holds true for all other components of b K. 
This is not a surprising result since the volume distor- 
tions in Fig. l(b) are just compensated by the lateral 
displacements of the vertical planes, so that no closure 
failure obtains. In the case of the (k) state of Fig. 3(a), 
we can write 

b k = -  ~ A / d x  K (21a) 

which with the aid of (10) gives 

= - ~dx - A ldx  ~ . (21b) 
k K 

This particular closure failure corresponds to the sum 
of all four gaps associated with the Burgers circuit 
of Fig. 3(a) generated by the tearing process, and 
which are denoted by dotted arrows. In the case of 
the remaining three states (kl), (k 2) and (k 3) we may 
write 

b kl = --  (~ Akldx r (22a) 
O , J  

-- ~Ak2dx r (22b) b k 2 =  

b k3= - ;Akadx r . (22c) 
3 

Because of (14a), the above relations are all equivalent, 
and more specifically are of the form given by (21b). 
In view of (131, (22) gives 

{ 4 }  4 ( V - 1 ) = - I  (23) bX = b l = b l = { 4 } z -  -V 1 
k 1 k 2 k 3 ~ - ~  • 

This numerical result corresponds either to the one 
extra half plane (6'-5') shown dotted in Fig. 4(b) or 
to its omission, also shown by the dotted line 6'-5' 
in Fig. 4(a). It is also significant to point out that the 

closure failure 5'-6' in Fig. 4(a) is also equivalent to 
the sum of the surface closure failures 6'-1'-4'-5'  in 
this same figure. The vectors 6'-1' and 4'-5' may be 
viewed as cancelling with one another to give 4'-1' 
or equivalently 6'-5'. In spite of the fact that the (k), 
(k 1) and (k 2) s t a t e s  possess closure failures, it is not 
strictly correct to speak of such states as dislocated 
states. Instead, such states are said to have associated 
with them an anholonomic object (Zorawski, 1967) 
which is a measure of the amount of free surface as- 
sociated with them. The (k 3) state, on the other hand, 
contains extra matter and thus represents a true 
dislocated state. The meanings of these terms will be- 
come more clear in the following sections. 

The line integrals of (21a) and (22) can now be con- 
verted into surface integrals by means of Stoke's 
theorem (Schouten, 1951) so as to obtain an alternative 
representation for the closure failure. In particular, in 
the case of (22b), we may write 

__ f k 2 KL bk2 •[rAz, l dF 
d $ 

= -½ f [arAkE-0rAkE]dF r r  (24a) 
.) s 

where 0r denotes the operator O/Ox r. (24a) can be 
written more specifically as 

b l =  f 0zA~dF 12 (24b) 
k2  3 K $ 

since dF 12= - d F Z l = d x l d x  2. We can further write 
K K K K 

(24b) as 

bl  2 x 2 = )dx2  1 
-oo 2 

+ .  1 f + ~ 6 ( x 2 ) d x 2 f d x  ,}  (24C) 

where (13) has been utilized along with the following 
relations (de Wit, 19731 

a2/4( - ~21 = _ 6(x2) (25a) 

and 
02H( + x2) = 6(x 2) (25b) 

where 6(x 2) is the Dirac delta function defined such 
lk 

that it is equal to zero whenever x 2 -¢ 0. These functions 

also have the following property 

f + °~a(x )d (26/ 2 x 2 = l  
--O0 

so that the evaluation of (24c) reduces to that of (23) 
obtained by the line integral method. 

The closure failure b k2 c a n  be expressed in still a 
third way by writing (24a) as 
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bk2= -- ; A~ALm2atKAkL21dF'2m2 (27a) 

or still more compactly as 

= - -  _f~'~l'2m2k2dfl2m2 (27b) bk 2 

where the quantity ~'~1"21£2 k2 is termed the anholonomic 
object and is given by 

~'~I .2m2k2=AK AL ~ Ak 2 1 A K A L  r~ .k2 OLA~2]. 
ral2Zltm2V[KZ-XL] ~ ~r,,~,12z-Xm2Lt/KZ-X L - -  

(28) 

It is apparent that whereas the integration in (24a) is 
carried out with respect to initial-state coordinates, 
that in (27b)is done with respect to final-state coor- 
dinates. Utilizing (11) and (13), we can now write for 
the specific component 

k 2 - - 2 A I A 2 0 2 A I = { - 1 ( ~ ( x z ) } 2 + { ½ ( ~ ( x 2 ) }  1 (29) 

which when substituted into (27b) again gives the same 
result as that obtained from (23). Similar to (27), we 
can now write (22c) as 

= f S[a£3k3dF z3m3 (30) bk  3 

k 3 • where S~,£3 IS termed the torsion tensor and written 
as (Kr6ner, 1958) 

Sl~m3k  3 _ _ A K A L  ,-~ Ak 3 
rXl3Zlm3~[KZlL] 

k 3 k 3 
_ X ~ K ~ L  [aKAL --aLAK] (31) __ ~ 2rx/3Z-Xm3 

It was first shown by Kondo (1955) that a non- 
vanishing torsion tensor signifies the presence of 
dislocations. In particular, we can write 

S i i X =  - (2 i~  ~ . k  2 (32) 

This result was again first demonstrated by Kondo 
(1955) and underscores the close relation between the 
torsion tensor and the anholonomic object. Utiliza- 
tion of (32), (31), (30) and (29) again gives b I = b  ~, in 
agreement with (23) and Fig. 4. k3 k2 

A further importance of the torsion tensor lies in 
the fact that it is a measure of the dislocation density 
(Kr/Jner, 1958). This can be seen by writing (22c) in 
differential form as 

d b  k3 = S f3mak3 d F  13m3 = S f3makagnalama d F n 3  = o~naka d f n 3  

(33) 

where the quantity Qt n3k3 is defined as the dislocation 
density given by 

O~ n3k3 = ~.n313m3Sl'3n~3k3 (34) 

while I~ n313m3 is the permutation tensor defined by 
e n313m3 =en313m3/q//g (35) 

and where e n313m3 a r e  the permutation symbols, while 
g is the determinant of the metric tensor gj,3z3 (Fung, 
1965). For the specific component ~3a we obtain 

{ 1} (36a) 
k3 

which upon integration in the manner of (26) gives 

c~al _ V-  1 1 (36b) 
k 3 V = --g" 

The fraction in the above equation simply refers to the 
number of extra half planes per four planes of the 
origil~a~ reference lattice, i.e. one. The first superscript 
in &oko refers to the dislocation line direction, while 
the second pertains to the direction of its Burgers 
vector. Similarly to (33), we may also utilize (27b) to 
obtain 

(~ n2k2 : __ ~n212m2~'~l'2m2k2. (37) 

Strictly speaking, the above relation gives the density 
of newly created free surfaces created by the perfect 
tearing process. It is apparent that 

~31 =0(31 (38) 
k 2 k 3 

The above relation once again underscores the close 
connection between the anholonomic object and the 
torsion tensor. It is in fact this close relation that has 
enabled Zorawski (1967) to formulate his theory of 
dislocations on the basis of the anholonomic object 
rather than torsion. Finally, it is a relatively straight- 
forward matter to show that both Si~ ~ and ~ i ~  
associated with Fig. l(b) are zero. This is to be ex- 
pected since the Burgers circuit corresponding to 
this state has associated with it neither dislocations 
nor newly created free surfaces. 

Some further fundamental tensor quantities associated 
with a two-phase interface 

Let us consider next the parallel displacement of a 
vector c x through a distance dx". According to Kr6ner 
(1959) and Schouten (1954), this gives rise to a change 
de ~ which can be expressed as 

dc ~ = - F~c~dx" (39) 

where F~a is termed the connection. In those cases 
where only elastic distortions are involved, such as the 
(~c) state, we may write (Schouten, 1954) 

F ~ =  (,~x} (40) 

where {,~} is the Christoffel symbol of the second kind 
given by 

{ ~;.} de-----f ½g~(~,gx, + C3;.gu~ -- c~,gu;t). (41) 

A relation of the type given by (40) describes a 
Riemannian space and may be denoted by V, (Schouten, 
1954). Furthermore, the connection Fix is said to be 
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metric with respect to g,2• Under these conditions the 
covariant derivative of g,,2 vanishes, i.e. 

V def~ " -- F~,~g~ =0 .  (42) ,g2~ = cug2~- Fu2gp~ 

If however the above condition is not satisfied, we may 
write 

Q u ~ =  -Vug2~. (43) 

Under these conditions, F~2 is not metric with respect 
to gu2 and we must rewrite (40) as (Schouten, 1954; 
Bilby, Gardner, Grinberg & Zorawski, 1966): ~o 

= + ~ "  .~+ _ F/z2 {; i t}  2~.'L4~,2 Qi~., Q'~.,2). (44) 

(44) would hold, for example, if the metric g,,2 were 
defined with respect to a different coordinate system, 
i.e. ~,2. Physically, this state of affairs would be 

equivalent to utilizing a measuring device or ruler of 
variable length. The manifold defined by (44) is termed 
an A,. Clearly, for a V,, as expressed by (40), lengths are 
conserved upon parallel transport. 

For the dislocated (k 3) state which possesses the 
metric gm~, the connection may be written as (Schouten, 
1954) 

Fk3 - k3 - - k3 - k3 ~k3 (45) 
m313 = Im313 ) "~ bm31" 3 - - h i "  3 . m 3 at- b . m3l 3 

• k 2 • . where the asymmetric part of Fm313 1S simply 

k3 =Sm3/~ k3 (46) F[m313]  

and where the torsion is that given by (32)• In view of 
the following relations • 

k 3 k3n3, -, o 3 
Sl~  . m3 = g m 3 o a g  ~l'3n" 3 (47a) 

and 
k 3 k3n3-- 0 3 

S .  m313 =gz3o3g b'3m3 (47b) 

we can utilize (45) to write the following two com- 
ponents of Fk33t3 

F12={~}}+2S i i 1 = 0  (48a) 
k 3 k 3 

while (48b) 
k3 

The first of these relations follows from 

{~2} = {~31 } =½g11(cq2g* 1) = - S i i l  k3 k3 k3 (49) 

where the metric tensors have already been given by 
(19). In terms of (39), the component F211, given by 

(48b), measures the change in length dc ~ of a test vector 
c ~ as it undergoes a parallel displacement over the 
distance dx 2. This change is of course equal to zero 
because of (29) and (32), so that once again, the (k 3) 
state exhibits distant parallelism. The reason for this 
of course is that Fkm313 is metric with respect to groat3" If 
such were not the case, it would be necessary to rewrite 
(45) as (Schouten, 1954) 

k 3 k 3 k 3 ~ k 3 ~k  3 
F m a l 3  = {m3/3}  -t- ShOal3 - -  ~l" 3 . m 3 "+" ~ . mal 3 

..F. 1_./g"$ . . k 3 ± / - ~  . k 3 k 3 
- Q  m313 ) . ( 5 0 )  2 U ~ m 3 / 3  7-  ' ~ l  3 . m3 

Finally, for the perfectly t o r n  (k 2) state, we can write, 
similar to (45), 

k 2 k 2 ~ k 2 ~ k 2 k 2 
F m 2 1 2 =  { m E l E } - - ~ m 2 1 "  2 -t- .~l '2 . m 2 - - ~ ' ~  . m2l 2 . ( 5 1 )  

k 2 In view 0f(32) it is apparent that the analysis of Fro212 is 
identical to that of Fk23 . For example 

k 2 k 2 
F[m212] = - -  ~"~m21~ (52) 

while 

{;~} = {~} = -2f2i: i ' .  k 2 (53) 

k 2 If  Fm212 is not metric with respect to gin212 , we must 
write the connection in a manner similar to that of (50). 

Another item of interest is the Riemann-Christoffel 
curvature tensor defined as (Schouten, 1954) 

" " P (54a) R~,i; ~ = 2~tuFa> + 2FtulolF21~ 

or in expanded form as 
"~ K K K p K p R;i;  ~ = cuF; .~ -  OaFu~ + FupF2~- F2oFu~. (54b) 

The importance of this quantity lies in the fact that it 
determines the integrability conditions of F ~  
(Schr6dinger, 1954), i.e. when this quantity vanishes, 
integraNlity with respect to F~v obtains. It can be 
shown from equations of the type given by (40), (45) 
and (51), used in conjunction with (54), that the 
curvature tensor vanishes for all of the states con- 
sidered in the present study. This is an important 
finding since it shows that these spaces all possess 
teleparallelism or absolute parallelism. Physically this 
means that a vector displaced by parallel transfer from 
one point to another is independent of path. This is 
obviously true for all of the Burgers circuits considered 
thus far. 

The final item of interest concerns the nature of the 
strain tensors associated with the states thus far 
described. In particular, we may write 

e~2 = (g~2g~2)/2 (55a) 
K 

eg2/2 = (gk212 -- Kgk212)/2 (55b) 

ek313 = (gk313 - -  gKk313)/2. (5  5C)  

The last two equations are equal and involve pure 
plastic strains, whereas (55a) gives the sum of both the 
plastic and elastic strains• The elastic strain, however, 
may be separated out as follows 

e~;. = (g,,2 - kg:~2)/2 (56) 

where gt,;. is the metric associated with the (~:) state, 

just as g~2 was the metric associated with the (K) state. 
K 

S u m m a r y  a n d  c o n c l u s i o n s  

The techniques of differential geometry have been 
applied to both coherent and incoherent two-phase 
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interfaces. Various tensor quantities such as distortion, 
torsion and curvature have been developed in terms of 
the Burgers circuit and are shown to give what is 
perhaps the most complete description available until 
now of the Burgers vector and dislocation density 
associated with such two-phase interfaces. 
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Efficient Structure-Factor Calculation for Large Molecules by the Fast Fourier Transform 
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A method is presented for calculating structure factors by Fourier inversion of a model electron density 
map. The cost of this method and of the standard methods are analyzed as a function of number of atoms, 
resolution, and complexity of space group. The cost functions were scaled together by timing both meth- 
ods on the same problem, with the same computer. The FFT method is 3½ to 7 times less expensive than 
conventional methods for non-centrosymmetric space groups. 

Structure factor calculation is one of the major ex- 
penses in refinement of macromolecular structures. 
The purpose of this paper is to show how the fast 
Fourier transform (FFT) method can be used to cal- 
culate structure factors, and to compare FFT structure- 
factor calculation with conventional methods in terms 
of convenience, speed, and economy. A specific com- 
parison of the two methods for the space group P6122 
has been carried out as part of a project in this lab- 
.oratory to refine the structure of thermolysin, a pro- 
teolytic enzyme from Bacillus thermoproteolyticus 
(Matthews, Weaver & Kester, 1974). It will be shown 
that the FFT structure-factor calculation is con- 
siderably less expensive than any of the direct-sum- 
mation methods. 

A. Calculation of structure factors by the FFT method 

The fast Fourier transform algorithm can only compute 
finite discrete Fourier transforms. Therefore we must 

construct a model electron density map sampled on 
a grid and invert it to obtain our structure factors. 
The calculation of such a model map presents two 
problems which must be solved in order to use this 
method. First, a procedure must be devised to solve 
the sampling problem; otherwise the model electron 
density map must be constructed on a very fine grid, 
which greatly increases the computer storage require- 
ments and the cost of the calculation. Second, a con- 
venient functional representation must be found for 
the electron density distribution of a single atom. 
Sayre (1951) discussed these problems in some detail. 
In the following sections we describe ways of solving 
these problems, and also discuss programming strategy. 

A.1. The sampling problem 
The FFT algorithm can only be used to calculate 

the finite discrete Fourier transform of a function 
sampled at regular intervals on a grid. The act of 
sampling a continuous function implies potential loss 


